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A B S T R A C T

Raven’s progressive matrices (Raven, 1941) are extremely popular measures of general mental ability. However, their
length may not suit every researcher’s or practitioner’s needs. Short versions of the Advanced version have resulted in
problematic factor structures and internal consistencies (Arthur, Tubre, Paul, & Sanchez-Ku, 1999; Bors & Stokes,
1998): Is the last series of the Standard Progressive Matrices a more viable option? The aim of this research was to
investigate the structural validity and internal reliability of the last series of the SPM (SPM-LS) as a standalone
measure. The SPM-LS binary (correct/incorrect) responses of 499 undergraduate students were investigated through
unidimensional Item-Response Theory (IRT) 1–4 Parameter Logistic (PL) models. They were satisfactorily modeled
by unidimensional models (CFI3PL=0.974, TLI3PL=0.959, RMSEA3PL=0.059, SRMR3PL=0.056), offering good
empirical reliability (rxx′,3PL=0.843), and outperforming the short Advanced Progressive Matrices’ previously re-
ported qualities. Full nominal responses – recovering information from the distractor responses – were further ex-
amined with recently introduced 2–4 Parameter Logistic Nested (PLN) models (Suh & Bolt, 2010), providing sig-
nificant reliability gains (Δrxx′=0.029, Bootstrapped 95% CI [0.019, 0.036], z=6.06, p < .001). Uses, limitations,
conditional reliability and scoring strategies are further examined and discussed.

1. Introduction

Raven’s Standard Progressive Matrices (SPM) test (Raven, 1941) –
along with the Advanced Progressive Matrices (APM) test – are cer-
tainly among the most heavily used and most easily administered
measures of general mental ability (Pind, Gunnarsdóttir, &
Jóhannesson, 2003). Because of their non-verbal content, and thus low
culture loading, and because of their correlations with multi-
dimensional measures of intelligence (e.g., Jensen, Saccuzzo, & Larson,
1988), they are often considered as central among other measures of
cognitive ability (e.g., Carpenter, Just, & Shell, 1990). Although they
have been criticized for not imperfectly reflecting pure g (Gignac,
2015), and although the form of analytic intelligence measured by
Raven’s matrices may to some extent be multifaceted (Carpenter et al.,
1990), Raven’s matrices are often considered as one of the purest
measures of g or fluid intelligence.

A limitation of these tests is their length: The SPM is composed of 60
items and the APM is composed of 36 more complex items. Although
conveniently administered, they may not fit well in one-hour research
protocols that aim to administer other measures (Arthur, Tubre, Paul, &
Sanchez-Ku, 1999). Accounting for these length issues, the APM have

been primarily studied as candidates for two shortened 12-item ver-
sions (Arthur et al., 1999; Arthur & Day, 1994; Bors & Stokes, 1998),
through two different methods – one selecting items systematically
from all series (Arthur & Day, 1994), the other basing itself on item-
total correlations (Bors & Stokes, 1998).

1.1. The shortcomings of the short APM

However, there are various limitations to these two APM versions.
First, the existing psychometric investigations of these scales have
produced mixed results, with especially somewhat problematic internal
consistencies – with variable Cronbach’s αs, ranging from 0.58 (Ablard
& Mills, 1996) to 0.73 (Bors & Stokes, 1998) – and problematic fit of a
unidimensional factor structure – with Comparative Fit Indices around
0.90 (Bors & Stokes, 1998), Tucker-Lewis Indices ranging from 0.84 to
0.87 (Arthur et al., 1999), and Non-Normed Fit Indices around 0.88
(Bors & Stokes, 1998). Because of the short length of these versions,
their qualities have been considered acceptable, but the estimates re-
ported are actually typically considered as insufficient (e.g., Hu &
Bentler, 1999). In addition, Bors and Stokes (1998) actually report a 2-
correlated factors solution to fit the data slightly better than a one-
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factor solution, further questioning the tests’ unidimensionality. The
authors trace back this issue to the original APM test itself, whose
unidimensionality was also questioned (Dillon, Pohlmann, & Lohman,
1981).

Second, all of the investigations of these short measures have used
Classical Test Theory (CTT) approaches – based on the matrix of cor-
relations between items (“limited information”), not the raw responses
(“full information”). CTT is especially pointed out as lacking in the
study for ability measures of varying difficulty levels (Macdonald &
Paunonen, 2002). More generally, CTT is often pointed as deficient
compared with Item-Response Theory (IRT) in the study of psycholo-
gical measures, for the reason that CTT constrains the study of the re-
lation between the construct and its observations, by essentially fixing
observations to reflect a “true score” with added random noise
(Borsboom, 2006). In contrast, IRT allows to model responses as pre-
dicted by a non-linear function of the latent ability. In the case of ca-
tegorical responses, IRT especially allows to model item responses with
logistic functions of the ability. Finally, IRT allows to account for a
variety of testing phenomena that CTT cannot account for, such as
pseudo-guessing and slipping.

Finally, preferring the APM as a candidate for a short version is not
the only available solution. Because of their complexity, the APM may
appear more called for in samples of post-secondary students, but 1)
post-secondary students are primarily heavily studied for convenience,
and are not representative of the general population in intelligence, and
2) even in post-secondary student samples, the observed scores of the
SPM are high but still allow to measure interindividual variability (e.g.,
Myszkowski, Storme, Zenasni, & Lubart, 2014), up to IQ levels of 134
(Jensen et al., 1988), corresponding to the 99th percentile of a normal
IQ distribution. In other words, the SPM is of course easier than the
APM, but its coverage is sufficient as a quickly administered IQ proxy in
the normal range, as demonstrated in correlation studies between IQ
measures and the test (Jensen et al., 1988). Thus, while the APM seems
an optimal choice, the SPM can also be considered a good candidate for
a short version, which could certainly be more appropriate for the
general population, but still appropriate for post-secondary students.

1.2. Revising the SPM

In this study, we aimed at proposing a way to overcome the lim-
itations of the existing short APM measures and of their investigations,
by proposing an investigation of a short SPM version, which consists of
the full most complex last set to be taken as a standalone. Additionally,
since we pointed CTT assumptions to not be appropriate for Raven’s
matrices tests, we addressed the shortcomings of the previous in-
vestigations with the use of an alternative framework, IRT, which al-
lows to model responses as they relate to examinee-specific latent
ability and item-specific characteristics.

1.3. Studying binary responses with IRT

Because each incomplete matrix has only one correct answer and no
answer considered partially correct, the typical scoring of the SPM is a
count of correct answers. In other words, the categorical responses are
dichotomized into pass/fail (0/1) binary responses. One of the most
useful frameworks in analyzing the structure and score reliability of
instruments that produce such responses is the IRT framework, which
consists in building latent variable explanatory models of each item
responses. In other words, IRT models the probability p(θ) of a specific
response to an item as a function of the latent trait or ability (θ) –
assumed constant for each test taker.

In binary IRT, responses are typically modeled as logistic functions
of the ability. The resulting logistic models vary upon their number of
(free) item-dependent parameters. One-Parameter Logistic (1PL)
models, also named “Rasch” models, only allow items to vary by their
degree of “difficulty” – or “location” – which is the point where the

slope of the relation between θ and p(θ) is maximized. Two-Parameter
Logistic (2PL) models allow items to vary not only by difficulty, but also
by strength of relation between θ and p(θ), which is represented by a
“slope” or “discrimination” parameter. Three-Parameter Logistic (3PL)
models further allow items to vary by one of the asymptotes in the
relation between θ and p(θ). Habitually, a variable lower asymptote is
modeled, which then represents the probability to succeed an item even
at very low θ levels – in other words the probability of a correct guess.
For that reason, that third parameter is often referred to as a “pseudo-
guessing” parameter. Finally, the 4-Parameter Logistic (4PL) model
further allows items to vary by both the asymptotes in the relation
between θ and p(θ). As the lower asymptote is typically estimated in
3PL models, the second asymptote modeled in 4PL models then corre-
sponds to the probability of failing an item in spite of a very high θ.
Consequently, this parameter is often called an “inattention” or “slip-
ping” parameter.

Because the items of the SPM-LS present test takers with a set of
possible answers that include the correct one, we hypothesized that
guessing was not negligible – and thus should not be fixed to 0 – nor
perfectly random – and thus should not be fixed to 1/8th. Therefore, we
hypothesized that the 3PL and 4PL models, which estimate a pseudo-
guessing parameter, would present a better fit of the responses than the
1PL and 2PL. We however hypothesized that inattention for a test of
such short length would be minimal, and thus hypothesized that the
3PL model would actually fit the data better than the 4PL, which esti-
mates an inattention parameter.

1.4. Recovering distractor information with polytomous IRT models

Although the outcomes of the SPM are typically treated as dichot-
omous (e.g., Lynn, Allik, & Irwing, 2004), there are actually 8 possible
responses per item, and not only 2. Therefore, in reality, the SPM-LS
does not directly result in binary responses, but in polytomous ones.
Further, incorrect responses may include information about the ability
being tested (Vodegel Matzen, van der Molen, & Dudink, 1994), sug-
gesting that the modeling of raw polytomous responses of the SPM-LS
items with polytomous IRT models could recover such information.

A heavily used IRT model of polytomous responses is the Nominal
Response Model (NRM) introduced by Bock (1972), which estimates
two parameters – the same parameters of location and slope than in the
binary 2PL model – for each response category of each item. Suh and
Bolt (2010) recently argued that the NRM model is appropriate for si-
tuations where the response to an item can be assumed to result from a
comparison of all responses, but less appropriate for situations where
the distractors are only considered as potential responses for test takers
that are unable to find the correct response – in other words, for such
situations, if the test taker follows the correct strategy, the correct re-
sponse is found and the distractors are overlooked, while, if the taker is
unable to follow the correct strategy, then and only then the examinee
considers distractors are potential responses. For these situations, Suh
and Bolt (2010) adapted Nested Logit Models (NLM) – which model
nominal outcomes as conditional upon a series of choices – to Item-
Response Theory. IRT NLMs have two levels: Level 1 distinguishes
correct from incorrect responses – for such purposes, a binary 2-4PL
model is used – while Level 2 models distractor responses with a
nominal model, conditional upon an incorrect response (Suh & Bolt,
2010).

In other words, as explained by its original authors (Suh & Bolt,
2010), a 3-Parameter Nested Logit (3PNL) model models the prob-
ability P(Uij=1∣θj) than examinee j chooses the correct response for an
item i as a function of examinee ability θj and item parameters βi (lo-
cation), αi (slope), and γi (lower asymptote):

= ∣ = +
−

+ − +P U θ γ
γ

e( 1 )
1

1ij j i
i

β α θ( )i i j

Further, for an item with mi distractor categories (in the case of the

N. Myszkowski, M. Storme Intelligence 68 (2018) 109–116

110



SPM-LS, mi=7 for all items), the probability of choosing a distractor v,
which is noted P(Uij=0,Dijv=1 ∣ θj), is modeled as the product of the
probability of an incorrect response 1− P(Uij=1 ∣ θj) and the prob-
ability of selecting distractor v conditional upon an incorrect response P
(Dijv=1∣Uij=0, θj). Similar to a Nominal Response Model (Bock,
1972), this conditional probability part is a function of item category
parameters ζiv (intercept) and λiv (slope) of the considered category v,
and of the sum across all mi distractor categories of the propensities
towards each distractor category ∑ =

+ek
m ζ λ θ

1
i ik ik j.
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In Raven’s matrices, an examinee is expected to extract a logical rule
based on the observation of the incomplete matrix. The successful ex-
traction of the logical rule then allows the examinee to retrieve the
correct missing part (Carpenter et al., 1990). Should this strategy fail,
then participants may proceed to a guessing strategy, which may still be
in part related to their cognitive ability (Vodegel Matzen et al., 1994).
Thus, it appears that the responding process of Raven’s matrices cor-
responds to the description of the processes that are best modeled with
Nested Logit Models (Suh & Bolt, 2010): Examinees are expected to find
the correct answer through the identification and application of the rule
of the matrix (Level 1). Should the examinee not be able to properly
identify or apply the rule, then and only then would the distractors be
considered as potential responses (Level 2).

Therefore, we hypothesized that the NLM would better fit the re-
sponding process than the NRM, and would thus outperform it here.
More specifically, a NLM with a 3PL level 1 model – in other words, a
3PNL (for 3-Parameter Nested Logistic) model – was hypothesized to fit
the nominal data the best, for the same reasons (previously explained)
that we hypothesized the 3PL model to best fit the dichotomized data.

Because binary and polytomous models do not fit the same vari-
ables, they cannot be compared with typical IRT model comparison
tools – such as Likelihood Ratio Tests. However, the capability of
polytomous IRT to recover supplementary information from the dis-
tractors may help result in slightly different, and potentially more re-
liable estimates of θ, especially for test takers of low ability (Bock,
1972). For this reason, we hypothesized that the best fitting polytomous
model (hypothetically the 3PNL model) would outperform the best
fitting dichotomous model (hypothetically the 3PL model) in terms of
test reliability.

2. Method

2.1. Participants

The sample was composed of a total of 499 undergraduate students
of a French business school. All participants – 214 males and 285 fe-
males, aged between 19 and 24 (M=20.7, SD=0.93) – were French
speakers. They responded the SPM-LS individually and on a voluntary
basis. The SPM-LS and basic demographic questions were all presented
on computer. The participants received no compensation for partici-
pation, and had received no previous introduction to or training in
intelligence research or psychometrics.

2.2. Instrument

The SPM-LS is composed of the last series of the Standard
Progressive Matrices (Raven, 1941). This last series is the series of the
test has the expected highest overall difficulty of the SPM, and it is
composed of 12 items of increasing difficulty. Each item is an in-
complete 3×3 matrix of non-verbal stimuli, which are related by lo-
gical rules. The last of the 9 stimuli is left blank, and the examinee is to
identify the missing stimulus among 8 possible answers – 1 correct and
7 distractors. To do so, the participant has to be able to identify the

logical rule used in the incomplete matrix, and to apply that rule to
identify the missing stimulus. The participants had no time limit to
answer the 12 items, and were encouraged to respond every item, even
when they were unsure of their response.

2.3. Data analysis

2.3.1. CTT analyses
We noted earlier that the other short versions of Raven’s matrices

(Arthur & Day, 1994; Bors & Stokes, 1998) have relied on traditional
CTT methods. Thus, for the sake of comparability between the SPM-LS
and the short APM versions, similar CTT-based methods were used on
the SPM-LS.

First, to explore the dimensionality of the SPM-LS, based on the
tetrachoric correlations between the 12 items, we conducted an
Exploratory Factor Analysis (EFA) with parallel analysis (Hayton, Allen,
& Scarpello, 2004; Horn, 1965), as implemented in the R package
‘psych’ (Revelle, 2017).

The SPM-LS being theoretically unidimensional, we also used
Confirmatory Factor Analysis (CFA) to examine the fit of a unidimen-
sional model. The CFA was performed with the R package ‘lavaan’
(Rosseel, 2012), with Weighted Least Squares Means and Variance
adjusted (WLSMV) estimation. As typically recommended (Hu &
Bentler, 1999; Yu, 2002), we used the Comparative Fit Index (CFI) and
Tucker-Lewis Index (TLI) with cut-offs of 0.95, the Standardized Root
Mean Square Residual (SRMR) with a cut-off of 0.08, the Root Mean
Square Error of Approximation (RMSEA) with a cut-off of 0.06, and the
Weighted Root Mean Square Residual (WRMR), with a cut-off of 1.0.

For reliability, we computed Cronbach’s α, as well as the now re-
commended unidimensionality index McDonald’s ωh (Revelle &
Zinbarg, 2009; Zinbarg, Yovel, Revelle, & McDonald, 2006). McDo-
nald’s ωh was based on the CFA model and computed with the package
‘semTools’ (Contributors, 2016).

2.3.2. Binary IRT models
1-4PL models were fitted using the R package ‘mirt’ (Chalmers,

2012). The models were compared using various methods, including
the corrected Akaike Information Criterion (AICc) – a lower statistic
representing a better fit – Likelihood Ratio Tests, and M2–based in-
dicators of Goodness-of-Fit (Maydeu-Olivares, 2013). These indicators
included the Comparative Fit Index (CFI) and Tucker-Lewis Index (TLI)
with cut-offs of 0.95, the Standardized Root Mean Square Residual
(SRMR) with a cut-off of 0.08, and the Root Mean Square Error of
Approximation (RMSEA) with a cut-off of 0.06.

In addition, we computed the estimates of empirical reliability from
the IRT test information functions (Raju, Price, Oshima, & Nering,
2007). Empirical reliability corresponds to the expected reliability in
the sample distribution of the θ scores, as estimated through the IRT
models. We also computed marginal reliability estimates, which are
typically used in conjunction with empirical reliability estimates (e.g.,
Myszkowski & Storme, 2017), and correspond to the expected relia-
bility in an (assumed) normal prior density of θ.

2.3.3. Polytomous IRT models
Polytomous models of the correct responses and the distractor re-

sponses have the disadvantage of being considerably more para-
metrized than binary models – for the reason that they model here 8
probabilities per item, while binary IRT models only model two.
Therefore, although a unique convergent solution was still found for the
nominal models, M2 –based indicators of Goodness-of-Fit failed to be
computed because of the lack of degrees of freedom. However, the
nominal models could still be compared with one another using the
corrected Akaike Information Criterion (AICc), and, for the nested
models, with Likelihood Ratio Tests (LRT). Additionally, we compared
the 3PNL models with their binary counterparts (3PL). Because they do
not fit the same manifest variables, their fit could not be compared, but
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their estimates of empirical and marginal reliability can be (Bock,
1972). To infer on reliability gains, in the absence of a prescribed test,
we computed basic bootstrapped confidence intervals – based on case
resampling – and bootstrapped Wald’s z tests of the reliability gains.
Finally, to compare the scoring strategies resulting from the different
models, we inspected scatterplots of the relations between sum scores,
CFA factor scores, and the factor scores of all IRT models using JASP
(JASP Team, 2018).

3. Results

3.1. CTT analyses

The EFA produced mixed results in terms of dimensionality: The
Parallel Analysis indicated to retain 5 factors, while only the first factor
had an eigenvalue above 1. Further, as can be seen on the scree plot
presented in Fig. 1, a drop in eigenvalues was observed between the
first factor (with an eigenvalue of 5.92) and the other factors (eigen-
values of 0.97 and below). Finally, the loadings on factors 2 to 5 did not
appear interpretable. The unidimensional model tested through CFA
indicated a borderline acceptable structural validity (CFI= 0.945,
TLI= 0.933, RMSEA = 0.079, SRMR = 0.108, WRMR=1.50).
Moreover, the SPM-LS had satisfactory reliability estimates, with a
Cronbach’s α of 0.92, and a McDonald’s unidimensionality estimate of
ωh of 0.86. Overall, although not meeting every expectation, these in-
dices compare advantageously to the indices that have been reported
for the short APM (Arthur & Day, 1994; Bors & Stokes, 1998). Further,
these results lead us to proceed to IRT analyzes assuming the structure
of the SPM-LS to be essentially unidimensional.

3.2. Binary IRT analyses

The absolute fit indices for the IRT binary models, as well as their
estimates of empirical and marginal reliability, are reported in Table 1.

As hypothesized, the 3PL and 4PL had an satisfactory fit to the data.
Further, the 3PL model had the best fit, in both the goodness-of-fit in-
dices and the Likelihood Ratio Tests – the 3PL model presenting a
significantly better fit that the 1PL (χ2= 182.653, df= 23, p < .001)

and the 2PL (χ2= 69.979, df= 12, p < .001) models. The Likelihood
Ratio Test suggested that the 4PL fit only marginally better than the 3PL
(χ2= 20.909, df= 12, p= .052). A lower AIC for the 3PL led us to
further use the 3PL as the best fitting model, but it should be noted that
overall, the differences in goodness of fit between the 3PL and 4PL were
very minimal.

As hypothesized, the SPM-LS with showed satisfactory empirical
reliability (empirical rxx′,3PL= 0.843, Bootstrapped 95% CI [0.828,
0.861]). The marginal reliability estimate for the 3PL model indicates
that observations from an assumed normal prior distribution produce
overall reliable estimates (marginal rxx′,3PL= 0.829, Bootstrapped 95%
CI [0.812, 0.841]).

3.3. Polytomous IRT analyses

The tested polytomous models being too heavily parametrized, their
M2 goodness of fit indices could not be computed. They could however
be compared with each other through Likelihood Ratio Tests. As hy-
pothesized, the 3PNL model appeared to fit the best the nominal data,
with a significantly better fit than the Nominal Response Model
(χ2= 142.333, df= 12, p < .001) and the 2PNL model (χ2= 65.295,
df= 12, p < .001). The 4PNL model did not fit the data significantly
better than the 3PNL model (χ2= 19.410, df= 12, p= .08). The
comparison of AICc for the different models also supported this con-
clusion. The Item Characteristic Curves of the 3PNL model are pre-
sented on Fig. 2.

The 3PL and the 3PNL models being the best fitting models for re-
spectively the dichotomous and the nominal responses, we compared
their reliability estimates to compare the two approaches. As hy-
pothesized, the information from distractors recovered by the 3PNL
model allows to obtain more reliable θ estimates in the low ability
domain, with an empirical reliability of 0.864 (Bootstrapped 95% CI
[0.851, 0.889]), and a marginal reliability of 0.853 (Bootstrapped 95%
CI [0.843, 0.873]). A significant gain in reliability – both empirical
(Δrxx′=0.029, Bootstrapped 95% CI [0.019, 0.036], z=6.06,
p < .001) and marginal (Δrxx′=0.024, Bootstrapped 95% CI [0.020,
0.041], z=5.63, p < .001) – was achieved through the use of the
3PNL model. The plot presented in Fig. 3 presents the reliability
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Fig. 1. Scree plot of the exploratory factor analysis (with parallel analysis).
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differences of the two approaches as a function of θ. It shows that the
gain in reliability is essentially found in low to average ability – in
reference to our sample.

Related to this point, we can observe on Fig. 4, which presents the
correlations between the various scoring strategies, that, in spite of
nearly perfect correlations between the scores of the different scoring
methods, the Nested Logit Models provide different estimations that the
other methods in the low ability levels.

4. Discussion

First investigated with CTT-based methods for the sake of compar-
ability, the reliability indices and fit indices of a unidimensional CFA
compared advantageously to the indices that have been previously re-
ported for the short APM (Arthur & Day, 1994; Bors & Stokes, 1998).
While we argue that these investigations are not appropriate models for
the responses at the SPM-LS, they still suggest that the SPM-LS presents
better psychometrical qualities in than the short APMs, regardless of the
psychometrical framework used.

Investigated through IRT models, the SPM-LS presented adequate
structural validity, and a strong reliability – outperforming reliability
and structural validity estimates previously reported for short forms of

the Advanced Progressive Matrices (Arthur et al., 1999; Bors & Stokes,
1998).

IRT modeling advances offer interesting possibilities in the in-
vestigation and scoring of ability measures. An important advance for
the modeling of responses to multiple-choice items – which the SPM
and APM are composed of – is the possibility to recover information
from distractor responses through the modeling of the full polytomous
responses (Bock, 1972), rather than the dichotomized pass-fail re-
sponses. The literature highlights two modeling approaches corre-
sponding to different problem solving processes: Nominal Response
Models (Bock, 1972) – in which distractors responses and the correct
response are modeled on the same level, and thus considered as all
competing in the solving process – and Nested Logit Models (Suh & Bolt,
2010) – in which responses of distractors are modeled separately from
the correct response, representing situations where the distractors are
considered only when the initial problem-solving strategy failed.

In the case of Raven’s matrices, both are certainly conceivable: A
respondent could either compare all potential responses directly, based
on their “fit” with the matrix – a process for which the NRM would be
appropriate – or start by trying to extract a rule in the matrix and apply
it to find the correct response, and, should this fail, proceed to a
comparison strategy – a process for which the Nested Logit Models

Table 1
Dichotomous IRT fit indices and empirical reliability of the SPM-LS.

Model χ2 df CFI TLI SRMR RMSEA AICc Empirical reliability Marginal reliability

1PL (Rasch) 346.061 65 0.899 0.898 0.106 0.093 5723.0 0.797 0.626
2PL 226.291 54 0.938 0.925 0.065 0.080 5634.1 0.805 0.792
3PL 114.266 42 0.974 0.959 0.056 0.059 5591.3 0.843 0.829
4PL 100.085 30 0.975 0.945 0.051 0.068 5599.1 0.832 0.779

Note. CFI, Comparative Fit Index; TLI, Tucker-Lewis Index; SRMR, Standardized Root Mean Square Residual; RMSEA, Root Mean Square Error of Approximation;
AICc, Akaike Information Criterion (corrected).

Fig. 2. Item characteristic curves of the best fitting (3PNL) model.
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would be appropriate. In any case, the results of the present study
notably suggest that, in multiple choice tests like Raven’s matrices,
pseudo-guessing is a phenomenon that should be accounted for.
Further, the incremental reliability resulting from recovering distractor
information through the Nested Logit Models indicates that distractor
responses bring information about the latent ability that can be useful
to at least attempt recovering. It further indicates that one may consider
some distractor responses as “partially correct”, in the sense that some
incorrect responses are more indicative of higher ability than others.

In the case of the SPM-LS, the recovery of information resulting
from the use of Nested Logit Models, albeit significant, may appear
minor, but a closer look at the reliability functions presented in Fig. 3
actually indicates important gains in the low ability domains. As an
important note, we mean “low ability” as compared with the average
level of our sample of post-secondary students, thus “low abilities” here
would likely be closer to average abilities in the general population. We
thus strongly recommend, sample size permitting, the use of these
modeling (and scoring) approaches, especially for populations that are
not expected to have overall high performances at this test. More
generally, we believe that future investigations of similar tests (in-
cluding the SPM, the APM and their short versions) should consider
such methods, which account for important features of the psycholo-
gical testing situation and result in reliability gains.

4.1. Limitations

This study certainly has limitations. First and foremost, the con-
venience sample used is not an accurate representation of the general
population. In particular, although we advanced that the SPM still
captures variability in intelligence among post-secondary students, our
reliability analysis shows that the test is probably too easy for the po-
pulation tested – above 2 standard deviations above the mean, the re-
liability drops. Further, 52 out of 499 (approximately 10.4%) of the
sample had a perfect score of 12, suggesting a ceiling effect. This result
can be contrasted with research indicating that the full SPM dis-
criminates up to the 99% IQ percentile (Jensen et al., 1988). Overall,
these results suggest that the SPM-LS is probably more appropriate for
populations of lower expected intelligence levels than our sample.

Furthermore, the estimates presented in this study are dependent upon
the sample, and the psychometric qualities observed in this sample need
further replication. For these reasons, we recommend that this study be
replicated on a variety of samples, using other sampling strategies –
especially random sampling from the general population.

In addition, this research suggests that the dimensionality of the
SPM-LS should be further investigated (or strengthened). Indeed, al-
though the results of the EFA and CFA indicated mixed results, and
suggest that the SPM-LS may not be a purely unidimensional measure.
We recommend that the SPM-LS be investigated in larger samples to
further the investigation of its dimensionality.

Also, it is important to point out that only internal reliability and
factor structure were investigated in this study. We thus suggest that
further studies investigate other important psychometrical qualities
such as test-retest reliability and concurrent validity – which was done
for the short APMs. So far, the concurrent validity and test-retest re-
liability of the SPM-LS can only be inferred from those of the original
SPM, which is obviously insufficient. Related to this point, a limitation
of this study is the lack of a comparison between the full length SPM
and the SPM-LS. The SPM-LS was here investigated as a standalone test,
which prevents the SPM-LS responses analyzed from being potentially
contaminated by responding the first 4 series of the SPM, but also
prevents an actual comparison between the two tests. Thus, it is im-
possible from this study to discuss the loss in test information that re-
sults from shortening the SPM.

On a more technical note, the calibration of the Nested Logit Models
was substantially longer and required a much larger number of itera-
tions to converge than the binary models and the Nominal Response
Model. Overcoming these challenges is of course dependent upon var-
ious factors (sample size, the number of distractors, the use of priors,
the optimizer used, etc.), but researchers interested in applying Nested
Logit Models should be aware that such models may not be computa-
tionally parsimonious. Related to this, the calibrated Nested Logit
Models being heavily parametrized, their parameter estimates may be
very sensitive to the sample and thus less stable than the estimates of
less complex models (for example binary models). Future studies may
examine the reproducibility of the parameters of Nested Logit Models
through cross-validation methods.
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5. Conclusion

To conclude, the SPM-LS appeared in this study as a shorter alter-
native to the SPM and as a more robust alternative to the short APMs.
While this study certainly calls for further investigations focused on
other qualities and other populations, we would suggest using the SPM-
LS in populations that share similarities with our sample, notably
convenience samples of post-secondary students (a strategy commonly
used in psychological research) similar to the present one, as well as
samples expected to have lower average g levels. Even though the
various scoring strategies used appeared to strongly correlate, we re-
commend scoring the SPM-LS through 3-4PL Item Response Theory
models. Further, although binary models already present a good fit to

the data collected with the test, we recommend – provided sufficient
sample size – the use of Nested Logit Models to recover information
from the distractor responses and increase scoring reliability for low
abilities.
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